Recent technological advancements in high capacity pellet plants

Sergio Nunes – Samarco, Brazil
Mauricio Cota – Samarco, Brazil
Collin Bartlett – Outotec, Canada
Thomas Schwalm – Outotec, India
Karl-Heinz Hofmann – Outotec, Brazil
Agenda

- Outotec and Samarco in brief
- Industry megatrends and drivers
- Outotec technological advances
- Samarco 4 case study
- Summary
Agenda

- Outotec and Samarco in brief
 - Industry megatrends and drivers
 - Outotec technological advances
 - Samarco 4 case study
- Summary
A technology leader for over a century

Other recent acquisitions:
- BACKFILL SPECIALISTS
- TMS GROUP
- DEMIL MANUTENÇAO
- NUMCORE
- KILN SERVICES
- VPF, ASH DEC
- MILLTEAM
- EDMESTON
- AUBURN

Recent technological advancements in high capacity pellet plants
86th Annual Meeting of the Minnesota Section of the SME
Four business areas providing sustainable solutions

<table>
<thead>
<tr>
<th>Ferrous Solutions</th>
<th>Non-ferrous Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>For processing iron ores and other ferriferous materials in the entire value chain from ore to metal</td>
<td>For processing copper, nickel, zinc, lead, gold, silver and platinum group metals in the entire value chain from ore to metal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy, Light Metals and Environmental Solutions</th>
<th>Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>For sulfuric acid production, off-gas handling, alumina refining, roasting, calcining, biomass, oil shale and oil sands processing as well as industrial water treatment</td>
<td>Providing life cycle services to Outotec’s customers</td>
</tr>
</tbody>
</table>
Life cycle solutions creating best value to customers

Conceptual design
- R&D services
- Modeling & simulation
- Testwork
- Feasibility studies

Operation and maintenance
- Plant operation
- Spare parts
- Preventive maintenance
- Auditing
- Testwork
- Shutdown services

Engineering and supply
- Flowsheet development
- Basic/detail engineering
- Supply of process and plant equipment
- Operability & maintainability optimization
- Spare parts

Decommissioning
- Refurbishment of equip. for re-use
- Plant decommissioning
- Permanent shutdown of the plant
- Land reclamation

Construction and commissioning
- Plant construction
- Equipment installation
- Start-up and ramp-up services
- Training

Operation and maintenance
- Equipment life assessment
- Upgrades
- Process optimization
- Modernizations
- Training
WE ARE SAMARCO.

A BRAZILIAN COMPANY THAT SUPPLIES IRON ORE TO THE WORLD STEEL INDUSTRY.

- Founded in 1977
- Eighth largest exporter in Brazil, pursuant to the Foreign Trade Department of the Ministry of Development, Industry and Foreign Trade (January 2013)
- Second largest supplier of iron ore pellets on the seaborne market (2012)
- Private company, controlled in equal parts by two shareholders: Vale S.A. and BHP
Agenda

- Outotec and Samarco in brief
- Industry megatrends and drivers
- Outotec technological advances
- Samarco 4 case study
- Summary
Recent technological advancements in high capacity pellet plants

Source: World Steel Dynamics
Industry trends - demand for sustainable technology

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ore grade</td>
<td>Ore grades are declining and in order to meet the increased demand, more ore needs to be processed with more advanced technology.</td>
</tr>
<tr>
<td>Energy</td>
<td>Making metals requires a lot of energy and energy costs are constantly climbing. More energy-efficient processes are needed.</td>
</tr>
<tr>
<td>Emissions</td>
<td>Mining and metallurgical industries are major emitters of CO₂ and ecotoxic substances. Cleaner solutions must be developed.</td>
</tr>
<tr>
<td>Water</td>
<td>Water availability and pollution are critical issues. Advanced solutions for water cleaning, conservation and recycling are needed.</td>
</tr>
<tr>
<td>Oil peak</td>
<td>Oil peak is approaching. Oil is expected to run out by 2050 with current production rates, thus alternative sources are needed.</td>
</tr>
<tr>
<td>Recycling</td>
<td>The need for recycling is growing, thus requiring new technologies for turning scrap and waste into products.</td>
</tr>
</tbody>
</table>
Agenda

- Outotec and Samarco in brief
- Industry megatrends and drivers
- Outotec technological advances
- Samarco 4 case study
- Summary
Introduction

- Two industrial systems dominate the iron ore pelletising industry
 - Outotec’s travelling grate (accounting for over 2/3 global production)
 - Grate-Kiln pelletising system
 - Note: low capacity shaft furnaces have only regional relevance

- The Outotec travelling grate is unique
 - Plant capacity available from 1.0 to 9.25 Mtpy in a single machine
 - Market leader and capable of handling all types of iron ore
 - Magnetite, hematite and weathered ores

- Outotec has installed 46 pellet plants around the World
 - Ongoing development of the technology by Outotec continues with the most experienced pellet plant operators in the World
 - LKAB, Vale and Samarco

- Extensive Research and Development facilities in Frankfurt, Germany
 - In house R&D providing leading edge design concepts for the future
 - Specific process solution solving for our global customer base
High plant availability

- One straight grate indurating machine versus the Grate Kiln’s three “in line” processes leads to significant upsides, proven in plants designed/built by Outotec:
 - Plant availability
 - Design: 330 - 345 days/year
 - Achieved: up to 355 days/year
 - Plant operating campaigns
 - Planned: > 2 years
 - Achieved: > 5 years
 - A travelling grate reference in Europe recently concluded a ten year campaign without major shutdown!
 - Outotec travelling grates machines result in significant increases in plant production and reduction of operating expenses
Recent technological advancements in high capacity pellet plants
86th Annual Meeting of the Minnesota Section of the SME
Recent/future production capacity development

2002 – 2012:
124.5mtpy

2008 – 2012:
86.6mtpy

2008 – 2015:
156.9mtpy

Recent technological advancements in high capacity pellet plants
86th Annual Meeting of the Minnesota Section of the SME
In-house test facilities and the associated knowledge/expertise for testing representative iron ore samples and analysing results in order to offer tailored process plant solutions and the prerequisite process guarantees:

- Determination of required pellet feed mixture
- Determination of required green pellet moisture level
- Determination of achievable grate factor (specific capacity) and pellet quality
- Determination of design data for the indurating machine, especially its firing and cooling zones
Significant years of development/optimization of plant layout has taken place

- Right angle plant arrangement of green pelletizing and induration
- Minimization of green pellet transfer points
- Single deck roller screens at each balling disc
- Long collecting conveyor with reciprocating head
- Single deck roller screen at machine feed area
Pelletizing discs

- Well proven, robust 7.5m disc
 - Standard design
 - One single drive
 - Mitigation of multiple drive synchronisation problems

- Designed for advanced green pelletizing control
 - Frequency controlled drive
 - Automated inclination control
Optimized zone distributions

- Expansive experience of preheating/firing/cooling configurations for the processing of virtually any type of raw material (High LoI, High S)
- Tailored temperature profiles can also be modified for variation in raw materials over plant lifetime
- Equal heat treatment in all process zones
- Discharge of homogenously cooled product pellets reduces risk of damaging downstream equipment
CFD optimization

- Development
 - Verification/optimization of critical duct systems for temperature distribution, gas velocities and pressure drop

- Application
 - Samarco 3 & 4, Brazil
 - LKAB MK 3, Sweden

- Benefits
 - Reduction of ductwork pressure drops and consequently reduction of electrical energy consumption
 - Improvement of plant operating conditions and efficiency of “gas flow-sensitive” equipment, such as ESP’s and process fans

Recent technological advancements in high capacity pellet plants
86th Annual Meeting of the Minnesota Section of the SME

April 2013
Energy efficiency

- Various recuperation principles tailored to specific customer requirements
 - Reduced overall energy consumption
 - Reduced offgas volumes to be cleaned and released to the atmosphere resulting in reduced environmental impact
Recent technological advancements in high capacity pellet plants
86th Annual Meeting of the Minnesota Section of the SME
Lower energy consumption

<table>
<thead>
<tr>
<th>Plant Type</th>
<th>Grate Kiln</th>
<th>Grate Kiln</th>
<th>Grate-Kiln</th>
<th>Travelling Grate</th>
<th>Travelling Grate</th>
<th>Travelling Grate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Location</td>
<td>Europe</td>
<td>Europe</td>
<td>South America</td>
<td>Europe</td>
<td>South America</td>
<td>South America</td>
</tr>
<tr>
<td>Iron Ore Type</td>
<td>Magnetite</td>
<td>Magnetite</td>
<td>Hematite</td>
<td>Magnetite</td>
<td>Hematite</td>
<td>Hematite</td>
</tr>
<tr>
<td>Electrical Energy</td>
<td>26.7 kWh/t</td>
<td>14.5 kWh/t</td>
<td>25.0 kWh/t</td>
<td>27.5 kWh/t</td>
<td>14.7 kWh/t</td>
<td>17.2 kWh/t</td>
</tr>
<tr>
<td>(Induration/Fans)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Energy</td>
<td>67,800 kcal/t</td>
<td>69,500 kcal/t</td>
<td>280,900 kcal/t</td>
<td>47,500 kcal/t</td>
<td>240,600 kcal/t</td>
<td>220,000 kcal/t</td>
</tr>
<tr>
<td>(Gas/Oil+Carbon)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Energy</td>
<td>105.5 kWh/t</td>
<td>95.3 kWh/t</td>
<td>350.6 kWh/t</td>
<td>82.7 kWh/t</td>
<td>294.5 kWh/t</td>
<td>273.0 kWh/t</td>
</tr>
<tr>
<td>Consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total energy consumption of travelling grate is only 77-86% of competing systems
Higher reducibility

- No compaction of pellets required to maintain a high porosity for downstream reduction processes
- > 80% of pellets processed by Midrex Direct Reduction plants worldwide are produced on travelling grates

Pellets remain undisturbed during the complete heat treatment process!
High pressure burners

- **Development**
 - Substitution of traditional low pressure oil atomizers by high pressure oil atomizers

- **Application**
 - LKAB, Sweden
 - Samarco 3 & 4, Brazil
 - Dual fuel burner to provide the option to swap over to natural gas in the future

- **Benefits**
 - Reduction of atomizing air volumes and consequently reduction of oil consumption
 - Better atomization of the oil, forming a controlled flame shape to avoid contact with the refractory, which causes erosion
 - More equal temperature distribution of the flame
Pallet cars

- Significant upside to pallet car/travelling grate concept
 - Pallet car maintenance carried out offline
 - No disturbance to production
 - Bed height flexibility

- Pallet car concept
 - Designed for purpose based on significant operating experience
 - Optimised for reduced side wall consumption

- Grate bars
 - Increased bed permeability (+45 %)
 - lower energy consumption
 - Modified alloy for higher temperature and wear resistance - lower grate bar consumption
Dry lintels

- Development
 - Elimination of longitudinal and transverse water cooled lintels of the indurating hood to support separation walls
 - Substitution with adapted refractory and steel structure design

- Application
 - MBR, Brazil
 - Tata, India

- Benefits
 - Elimination of the entire water cooling on the furnace (approx. 800m³/min)
 - Reduction of investment costs due to smaller cooling tower, piping and cooling water pumps
 - Reduced plant operating expenses
Better insulation

- Development
 - Improvement of the inside refractory and/or outside thermal insulation to achieve surface temperatures of furnace and ductwork below 80 °C (instead of 120 °C)

- Application
 - Samarco 3 & 4, Brazil
 - MBR, Brazil

- Benefits
 - Reduction of energy losses and consequently reduction of thermal energy consumption
 - Improvement of working conditions for operation personnel
Our reference list tells the whole story …

<table>
<thead>
<tr>
<th>Operator</th>
<th>Location</th>
<th>Startup</th>
<th>Capacity (Mtpy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-GOK</td>
<td>Stary Oskol, Russia</td>
<td>2013</td>
<td>6.0</td>
</tr>
<tr>
<td>Samarco</td>
<td>Plant #4, Ponta de Ubu, Brazil</td>
<td>2013</td>
<td>9.25</td>
</tr>
<tr>
<td>Bhushan Power & Steel Ltd.</td>
<td>Rengali, India</td>
<td>2012</td>
<td>3.85</td>
</tr>
<tr>
<td>Tata Iron & Steel Co.</td>
<td>Jamshedpur, India</td>
<td>2010</td>
<td>6.0</td>
</tr>
<tr>
<td>Caofeidian</td>
<td>Caofeidian, China</td>
<td>2010</td>
<td>4.0</td>
</tr>
<tr>
<td>Brahmiani River Pellets</td>
<td>Kalinga Nagar, Orissa</td>
<td>2010</td>
<td>4.0</td>
</tr>
<tr>
<td>MBR</td>
<td>Nova Lima, Brazil</td>
<td>2008</td>
<td>7.0</td>
</tr>
<tr>
<td>Samarco</td>
<td>Plant #3, Ponta de Ubu, Brazil</td>
<td>2008</td>
<td>7.25</td>
</tr>
<tr>
<td>Vale</td>
<td>Tubarão VIII, Vitória, Brazil</td>
<td>2008</td>
<td>7.0</td>
</tr>
<tr>
<td>Gol-e-Gohar Iron Ore Co.</td>
<td>Sirjan, Iran</td>
<td>2007</td>
<td>5.0</td>
</tr>
<tr>
<td>LKAB</td>
<td>MK3, Malmberget, Sweden</td>
<td>2006</td>
<td>2.5 – 4.0</td>
</tr>
</tbody>
</table>
Agenda

- Outotec and Samarco in brief
- Industry megatrends and drivers
- Outotec technological advances
- Samarco 4 case study
- Summary
Project background

- After the successful implementation of the 7.25mtpa Samarco 3 project, Samarco commissioned Outotec to complete a study for the implementation of Samarco 4

- In 2010, Samarco approved the study and a LoA was issued, the contract was ultimately signed in March 2011

- Outotec commenced the engineering in a task force based in Belo Horizonte, with the implementation on a "fast track" basis, namely 31 months until the first pellet is produced

- Scope of Outotec contract
 - Basic and detail engineering
 - Steel structural design, boiler, and electrical and mechanical equipment
 - Civil and construction, electro-mechanical assembly and plant commissioning
Samarco pelletizing plants

Ponta de Ubú, Espírito Santo

Samarco 1 (1977)

Samarco 2 (1997)

Samarco 3 (2007)

Samarco 4 (2013)

Outotec

Kvaerner-Davy

(Year of Start-up)
Contract details

- Total Samarco investment: 700 million BRL (USD 350 million)
- Outotec contract value: ca. 200 million Euro (USD 266 million)
- Project implementation: 31 months
- Date of production of first pellet: 14. October 2013 (start-up)
- Plant capacity: 9.25 million tonnes of pellets per year
- Furnace size: 816m² - the World’s largest pellet plant
Engineering – status

- Design engineering is 100% complete
- Engineering disciplines involved: process, mechanical, structural steel, civils, piping, electrical and instrumentation and control
- The entire engineering has been developed in 3-D (PDMS, Tekla, TQS, Inventor)
- In 16 months 5,500 drawings and documents have been produced by Outotec and its partners and subcontractors
- Internal and external document communication peaked in September 2012 at approximately 10,000 per month
- Project taskforce comprises
 - Local Outotec engineering team: 22 personnel
 - CRA and IHM team partners: 80 personnel (peak)
Recent technological advancements in high capacity pellet plants

86th Annual Meeting of the Minnesota Section of the SME
Procurement status (January 2013)

- The current progress of procurement/supply is at 93%, including purchasing, manufacturing, inspection and on-site delivery
- Types of supplies: mechanical and electrical equipment, automation system, steel structure and piping
- 85% of the equipment has already been procured in 120 orders
 - 90% of suppliers are Brazilian
- 22,700 tonnes of material have already been delivered to the site
Construction status (January 2013)

Contractor: PARANASA
- Manhours estimate: 660,000
- Personnel: 400 (peak)
 - Direct: 316 + Indirect: 84
- Progress: 81% against forecasted 73%

- Construction data
 - 66,500 m³ of excavating
 - 1,100 tonnes of steel
 - 15,000 m² of formwork
 - 11,900 m³ of concrete
Electro-mech. assembly status (January 2013)

- Electro-mechanical assembly
 - Contractor: NIPLAN
 - Manhour estimate: 2,240,000
 - Personnel: 1,040 (peak)
 - Direct: 910 + Indirect: 130

- Refractory installation
 - Contractor: RIP
 - Manhour estimate: 342,000
 - Personnel: 260 (peak)
 - Direct: 220 + Indirect: 40

- Total estimated for construction: **3,242,000 Man-Hours**
- Current physical advancement: 11% of the forecasted 12%
Construction: Furnace View (January 2013)
Agenda

- Outotec and Samarco in brief
- Industry megatrends and drivers
- Outotec technological advances
- Samarco 4 case study
- Summary
Summary

- The travelling grate is, and will remain, the dominating technology of choice for the iron ore pelletising industry
 - Plant capacity currently available from 1.0 to 9.25 Mtpy
 - Future capacity may well be higher than this!
- Process flexibility of the travelling grate
 - Magnetite, hematite and weathered ores
 - Profiles can be modified for variation in raw materials over plant lifetime
- Ongoing development of the technology continues with the most experienced pellet plant operators in the World
 - LKAB, Vale and Samarco
- Extensive Research and Development facilities in Frankfurt, Germany
 - In house R&D leading to upgraded designs
 - Specific process solution solving for global customer base
Sustainable use of Earth’s natural resources

Thank you for your attention!
Any questions?

collin.bartlett@outotec.com