OVERVIEW OF DIRECT REDUCTION & ALTERNATIVE IRONMAKING PROCESSES & PRODUCTS

Joseph J. Poveromo Raw Materials & Ironmaking Global Consulting Joe.poveromo@rawmaterialsiron.com Ralph Smailer Metserv Consulting Jan van der Stel Tata Steel Europe R&D

ironmaking processes

o hot metal processes to feed oxygen converters or electric arc furnaces,

O direct reduction processes to feed electric arc furnaces or to produce DRI/HBI to feed blast furnaces, oxygen converters, etc,

O direct reduction or hot metal processes to process waste oxides from either EAF mini-mills or fully integrated plants.

	coal-	based		gas-bas	ed
Rot: Kilr	· ·	Rotary Hearth	Fluid Bed	Shaft Furnace	Fluid Bed
lum	p ore	fines	fines	pellets, lump ore	fines
SL/I DR othe	С	Inmetco Fastmet	Circofer	Midrex HyL	FINMET Iron Carbide Circored

smaller scale coal-based DRI processes
(rotary kiln) will continue

COAL BASED DRI IN NORTH

AMERICA

EAF penalty for coal ash, gangue; economy of scale issues too difficult for merchant (or even captive) plants producing DRI as an end product

Coal based DRI process can feed a hot metal process- SAF, HIsmelt, etc, with coal ash, sulfur, ore gangue removed by the slag.

Low natural gas prices now favor gas based shaft furnace processes

Process Routes for Hot Metal Production

Single Vessel Processes Blast furnace, cupola, smelter

Multi-vessel processes Production of DRI followed by smelting or melting step: Corex, HIsmelt, RHF/SAF Development of Competitive Hot Metal Processes

avoid cokemaking, sintering steps preceding blast furnace.

нот	META	L				
coke	(coal-based			->	
Blast		Smelting-		RHF/	RHF	
Furnac	e	Reduction		SAF		
Pellet	s/lump	fines	pellets/	fines	fines	
sinter			lump			
Mini-			Corex	IDI	ITmk3	
Blast <mark>F</mark>	'urnace	large s	<u>cale</u>	Fastme	elt	
		Finex		Redsme	elt	
Low C	02	HIsmelt				
Blast F	'urnace	CCF/HI	smelt	Prim	us (multiple	
Cupola	1	AISI			hearth)	
- scra	p	DIOS				
- wast	e					
oxide	S	<u>small sca</u>			e oxides	
OxyCu	սթ	Romelt, A	usIron, T	ecnored		

HOT META	L			
coke o	coal-based			· →
Blast	Smelting-		RHF/	RHF
Furn ace	Reduction		SAF	
Pellets/lump	fines	pellets/	fines	fines
sinter		lump		
Mini-		Corex	IDI	ITmk3
Blast Furnace	large se	<u>cale</u>	Fastmel	t
	Finex		Redsmel	t
Low CO2	HIsmelt			
Blast Furnace	CCF/HIs	smelt	Primus	s (multiple
Cupola	AISI			hearth)
- scrap	DIOS			
- waste				
oxides	<u>small</u> scal			oxides
OxyCup	Romelt, A	usIron, T	ecnored	

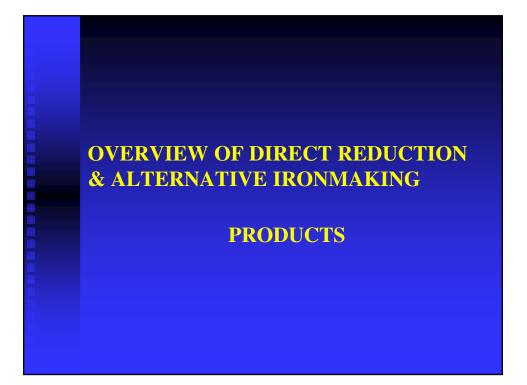
Alter	natives	for Hot	Metal	production.
1st-stage	output	2nd-stage	output	process concepts
<u>1. Shaft furnace</u>	pre-red. ore	Melter/gasifier	НМ	Corex
		Smelter	НМ	AISI
	DRI/HBI	SAF	HM	Midrex / Hylsa 4M /
		EAF + scrap	steel	Technored
2. Fluidized beds	pre-red. ore	Smelter	НМ	DIOS / Hismelt-Circofer
	DRI/HBI	SAF	НМ	Circofer / Circored /
		EAF + scrap	steel	Finmet / Fior
	Fe ₃ C	EAF	steel	Iron Carbide
	pre-red. ore	Melter/gasifier	НМ	FINEX
<u>3. Rotary hearth</u>	DRI	Smelter	НМ	Ausmelt 2stage
		SAF	нм	Fastmet-Fastmelt /
		EAF + scrap	steel	Iron Dynamics / Inmetco /
			l	Redsmelt / Comet /
<u>4. Others</u>	-	Smelter	НМ	Romelt / Ausmelt /
Ore pre-heater	ore	Smelter	НМ	Hismelt /
Cyclone	molten pre-red.	Smelter	НМ	CCF

Obstacles to Alternate Hot Metal Process Development

- Fundamental Technical Challenges
- Engineering, Scale-up, Maintenance
- Competing Process Routes
- Competing Alternate Iron Materials
- Changing Economic Conditions
- Need for Long –Term Financial Backing
- Need for Strategic Partner

- direct reduced iron (DRI),
- form of DRI known as hot briquetted iron (HBI)
- **pig iron**
- liquid hot metal

Obstacles to Alternate Hot Metal Process Development


- Fundamental Technical Challenges
- Engineering, Scale-up, Maintenance
- Competing Process Routes
- Competing Alternate Iron Materials
- Changing Economic Conditions changes in prices of process inputs and competing materials
- Need for Long –Term Financial Backing
- Need for Strategic Partner

Obstacles to Alternate Hot Metal Process Development

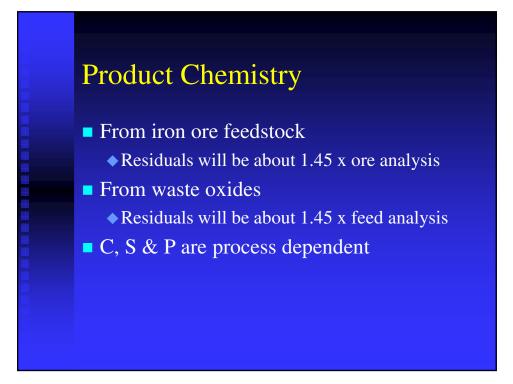
- Fundamental Technical Challenges
- Engineering, Scale-up, Maintenance
- Competing Process Routes
- Competing Alternate Iron Materials
- Changing Economic Conditions
- Need for Long –Term Financial Backing
- Need for Strategic Partner

Processes Already Developed or With High Chance of Success

- Corex, Finex VAI, Posco
- <u>HIsmelt</u> Rio Tinto; JV Partners: Nucor, Mitsuibishi, Shougang
- Iron Dynamics SDI
- **Fastmet**/Fastmelt, ITMk3 Kobe, SDI
- Redsmelt Severstal/Paul Wurth
- Primus ArcelorMittal/Paul Wurth

DR & Alt Iron Products

Definitions


- DR: Direct Reduction. Reduce iron oxide to metallic iron without melting. Unreduced ore compounds remain as undesirable oxides
- DRI: Direct Reduced Iron. Iron oxide feedstock exits in same form as entered (pellets in, pellets out; lumps in, lumps out)

Definitions (cont.)

- HBI: Hot Briquetted Iron: DRI that has been hot (1200 F, 650 C) briquetted to a high density pillow shaped briquette
- Hot Metal: Molten iron in liquid form, above 2500 F, 1370 C
- Pig Iron: Solid product of the iron blast furnace
- Residuals: Undesirable elements such as copper, nickel, chromium, tin, sulfur molybdenum, phosphorous

Definitions (cont.)

- Gangue: Rock minerals in the iron ore such as silica (SiO2), alumina (Al2O3), calcia (CaO), magnesia (MgO). These remain in the oxide form in DR processes
- Reduction:
 - Fe2O3 + 3CO = 2Fe + 3CO2
 - 2Fe2O3 + 3H2 = 2Fe + 3H2O
 - (Fe2O3 > Fe3O4 > FeO > Fe)

Produc	t Chemi	stry (Iro	on Ore I	Based)
	Hot M	Pig Iron	DRI	HBI
Fe	93	93	93	93
С	4.3	4.3	0.8 - 4.0	0.8 – 2.0
Mn	0.2 - 0.5	0.2 – 0.5	.02	.02
Si	0.5 – 1.0	0.5 – 1.0	0	0
Р	0.30-0.60	0.30-0.60	0	0
P2O5	0	0	0.5 – 1.0	0.5 – 1.0
S	0.04-0.06	0.04-0.06	.02	.02
Gangue	0	0	3 - 7	3 – 7

Matern	al Hano	lling		
	Hot M	Pig Iron	DRI	HBI
Shipment	Insulated	Open	Covered	Oper
Storage	Insulated	Open	Covered	Oper
Grab	No	Yes	Yes	Yes
Magnet	No	Yes	Yes	Yes
Conveyor	No	No	Yes	Yes
Bins	No	No	Yes	Yes

Energy	y Attrik	outes v	SOP	
	Hot M	Pig Iron	DRI	HBI
Blast Fce	NA	NA	++++	++++
BOF	=	NA	++	+++
EAF	++++	++		
Induction	++++	=	-	-

Chemistry	Attributes	v SOP
-----------	------------	-------

	Hot M	Pig Iron	DRI	HBI
Blast Fce	NA	NA	++++	++++
BOF	=		+++	+++
EAF	++++	++++	+++	+++
Induction	=	=	-	-

	Hot M	Pig Iron	DRI	HB
Blast Fce	NA	NA	??	Yes
BOF	Yes	Yes	??	Yes
EAF	Yes	Yes	Yes	Yes
Induction	??	Yes	??	??

Conclusions

- No single correct answer
- Local conditions important
- Steel product chemistry critical in selection of melting feedstocks
- Energy costs usually determine process location
- Waste oxides usually have high levels of residuals

Conclusions (cont.)

- New pyrometallurgical process development is costly (\$100'sM) and long term (several years, 5 to 20)
- Several new processes have reached commercial status while others are close to commercialization
- Other new processes are under development and may prove successful or not
- The end