Iron Ore Pellets: North America, BF and DR Grade, Supply and Quality

Dr. Joseph J. Poveromo Raw Materials & Ironmaking Global Consulting Bethlehem, PA

joe.poveromo@rawmaterialsiron.com

3rd COREM Symposium on Iron Ore Pelletizing Sept. 29 – Oct. 2, 2013 Quebec City

BF Grade Pellet Supply NAFTA

NAFTA Blast Furnace Pellet Balance2012

Compamy	Pellet Demand	Equity Supply	Cliffs	IOC	AMMC	Brazil
AHMSA	4.6	4.1	0.5			
ArcelorMittal	20.9	12.7	8.0	0.2	2.2	
AK	4.9		1.4	2.0	1.5	
Essar Algoma	3.5		3.5			
RG Steel	1.3		0.6	0.4		0.3
SeverstalNA	2.9		2.9			
USSteel	21.9	20.7	1.2			
Available for export/DR			0.9	7.1	5.1	
Total	60.0	37.5	19.0	9.7	8.8	

Changes in NAFTA BF Pellet Supply/Demand

- decrease in demand, namely the liquidation of RG Steel.
- pellet supply increases (MTPY):
- o Essar Minnesota: 4.1 to 7.0
- o USSteel KeeTac Expansion: 3.0
- o Magnetation/AK Steel: 3.5
- → BF Pellet Oversupply in NAFTA

Changes in Overall NAFTA Pellet Supply

- BF Pellet Oversupply in NAFTA
- Needs to be balanced by increased DR pellet demand:
- Potential for DR pellet demand increases (MTPY):
- o Other DRI plants:
- (Bluescope, USSteel/Republic, Gallatin, Severstal NA ?) ?

DR Grade Pellet Supply NAFTA

Atlantic Basin DRI Iron Unit Sourcing									
Company	Plant	DRI	Annual		Pell	ot			mn
Company	Γιαπ	Furnace		Consum		1	Market	Lump Consumption	
			(KT)	kg/T	KT	KT		kg/T	KT
ArcelorMittal	Montreal	1	248	1 450	260	360	0	0	0
	Wontreat	2	454	1,450 1,450	360 658	658	0	0	0
	Point Lisas	1	315	1,480	466	0	466	0	0
		2	296	1,480	438	0	438	0	0
		3	1,096	1,470	1,611	1,611	0	0	0
	Lazaro Cardenas	Midrex	1,369	1,430	1,958	1,958	0	0	0
		HyL	1,762	1,430	2,520	2,520	0	0	0
Nucor	Nulron Trinidad		1,323	1,470	1,945	0	1,945	0	0
	Louisiana Iron	HyL	2,500	1,450	3,625	0	3,645	0	0
Ternium	Monterey	3M	800	1,430	1,144	1,144	0	0	0
		4M	1,120	1,430	1,602	1,602	0	0	0
	Puebla	1	800	1,375	1,100	1,100	0	75	60
			12.1	1,442	17.4	11.0	6.5	5	0.1

Current, Potential DR Grade Pellet Supply to

Nafta, Trinidad

Company	Plant	Annual Production	Equity	Market	Comments
		(KT)	КТ	КТ	
Cliffs	Northshore	5,200	0	5,200	tested DR grade prod.
	Wabush	5,000	0	5,000	now idle
USSteel	MinnTac	14,500	14,500	0	potential conversion to DR
USSteel	KeeTac	6,000	6,000	0	potential conversion to DR
ArcelorMittal	Mines Canada QCM	9,200	9,200	0	4,500 DR grade limit
	Lazaro Cardenas 1	3,500	3,500	0	on site DRI/EAF consump
Rio Tinto	IOC Lab City	12,500	Ó	12,500	entiire plant served by flot
Ternium	Las Ecinsas	3,500	3,500	0	no outside sales
JV AM/Ternium	Pena Colarada	4,000	4,000	0	" '
VALE	Tubarao No 1,2	5,200	0	5,200	may be shutdown
"	Hispanobras No 4	3,800	1,900	1,900	AM portion used for DR
VALE	Vargem Grande	7,000	0	7,000	BF, DR grade
Samarco	Point Ubu No 1	7,000	0	7,000	BF, DR grade
"	" No 2	7,000	0	7,000	BF, DR grade
"	" No 3	7,600	0	7,600	BF, DR grade
LKAB	Kiruna No 1,2	8,800	0	8,800	BF, DR grade
	Malmberget No 1,2	6,800	0	6,800	BF, DR grade
	Svappavaara No 1	3,800	0	3,800	BF, DR grade
totals		120.4	42.6	77.8	3

totals in MTPY

Planned DR Pellet Plant Projects to Serve NAFTA

totals

Company	Annual	Equity	Market	Date of	
	Production (KT)	KT	KT	Start up	
Essar Minnesota	7,100	4,000	3,000	2,014	DR capability
AK Steel/Magnetation JV	3,000	3,000	0	2,015	DR capability possible
USS KeeTac expansion	3,000	3,000	0	??	DR capability possible
NML/Tata	14,000	7,000	7,000	???	seeking DR customer
Samarco Pont Ubu No 4	8,300	0	8,300	2,014	BF, DR grade
VALE Tubarao No. 8	7,500	0	7,500	2,014	BF, DR grade

comments

42.9 17.0 25.8

Source: RMI & WSD estimates

BF Pellet Quality

Relationship of Burden Properties to the Internal State of a Blast Furnace

Processes

Properties

Coke

Pellets & Sinter

			and out well blocked to be a second to be a	
		Charging, Drying, Preheating	 Size consistency Tumble index Compression strength 	* Size consistency
	Granular	$3Fe_2O_3 + CO \models 2Fe_3O_4 + CO_2$	* Low temperature disintegration	• Stability
	Zone	$Fe_3O_4 + CO \models 3FeO + CO_2$ FeO + CO \models Fe + CO ₂	* Reducibility * Swelling	
		$FeO + CO \models Fe + CO_2$ $FeO + CO \models Fe + CO_2$ $CO_2 + C \models 2CO$	 Compression strength after reduction 	* Reactivity
EAA	Cohesive	FeO + CO ► Fe + CO ₂		• Coke strength
	Zone	CO ₂ + C ► 2CO	* Contraction	after reaction
		Gas-Metal Reactions	* Softening	(CSR)
	Active Coke Zone	Gas-Metal Reactions	* Melting	* High temperature
	Stagnant Coke Zone	Gas-Metal, Slag-Metal Reactions		strength
	Raceway	$\begin{array}{c} 2C + O_2 \blacktriangleright 2CO \\ H_2O + C \blacktriangleright H_2 + CO \end{array}$	* Reduction	 Combustibility

Figure 1 Relationship of burden properties to the internal sate of a blast furnace (2-4)

DESIRED BLAST FURNACE PELLET CHARACTERISTICS

- High iron content
- minimal impurities
- high level of cold strength; tumbler > 95 % abrasion < 5%
- narrow size range, > 80 % 9.5 x 12.5 mm
- very low amount of fines, < 3 % < 6.3 mm
- high level of L.T.B. (low temperature
- breakdown) > 85 88 %, > 6.3 mm
- o good reducibility

DESIRED PELLET CHEMISTRY

- Maximize Fe content
- Moderate amounts of basic oxides: CaO, MgO; acidic oxide, TiO2
- Minimize:

moisture acidic gangue: SiO2, Al203 impurities –steelmaking impact- P, S, Mn, Cr, Ni, Cu, other minor elements elements harmful to ironmaking, Na, K, Zn

DESIRED PELLET METALLURGICAL PROPERTIES fluxed pellets vs. acid pellets lower coke rates: 15 – 30 kg/T increased gas utilization reduced flux calcination reduced wall thermal load reduced hot metal Si operate at higher flame temperatures

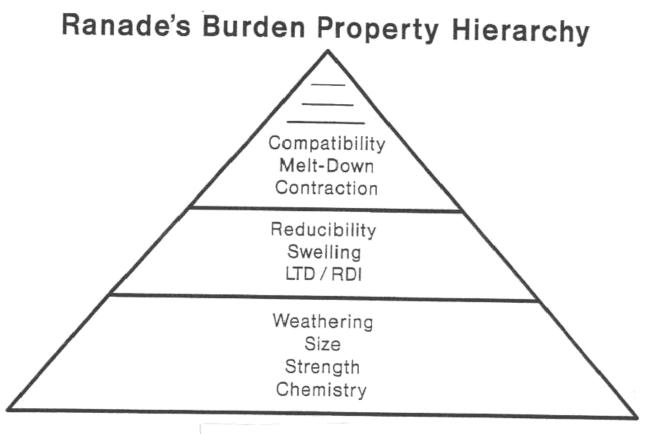
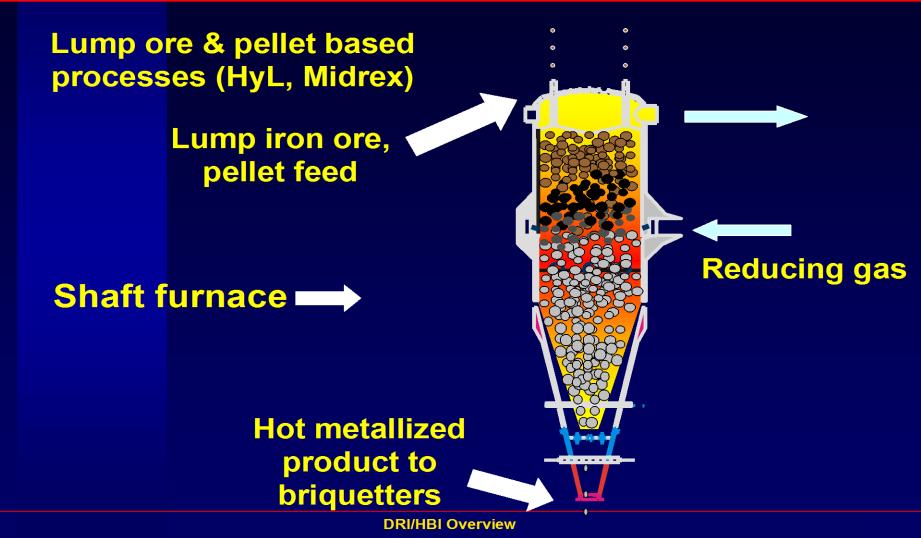



Figure 5 (8)

Direct Reduction Pellet Quality

Available Processes

January 29, 2008

Chemistry Considerations

- direct reduction processes:
 - chemical change is removal of oxygen from ore
 - remaining constituents stay with direct reduced iron product but increase in concentration due to the removal of oxygen
 - these affect process economics of subsequent EAF melting vessel
- Blast furnace, smelting reduction processes
 - formation of refining slag allows modification of hot metal product to meet requirements of subsequent steelmaking process

REQUIRED CHEMICAL PROPERTIES

Direct Reduction Processes - Shaft Furnace Rotary Kiln, Fluidized Bed, Rotary Hearth processes :

Maximize: Fe, total iron > 67%.

Minimize: gangue, impurities, residual elements, moisture, LOI

REQUIRED CHEMICAL PROPERTIES

Minimize: gangue

 $SiO_2 + Al_2O_3 + TiO_2$, acid gangue prefer < 2% but accept < 3%.

CaO + MgO, basic oxides

basic oxides (< 3.0 %) displace purchased flux in steelmaking;

REQUIRED PHYSICAL PROPERTIES

- shaft furnaces: pellets, lump ore
- key physical properties are size consist, mechanical strength:

economic importance

- (a) yield of pellet, lump ore converted to DRI
- (b) performance of the shaft reduction furnace
 - unlike blast furnace, pellets (and lump ore) are only solid materials and so determine gas distribution, permeability, reduction behavior

DR Pellet Size Exceeds BF Pellet Size

- <u>DR pellets: >50 % + 12.5 mm vs.</u>
- BF: 9.5 x 12.5 mm target
- Benefits of larger pellets :

Increase in permeability, increased yield (fewer smaller pellets degrading into fines), reduced clustering tendency (with a decrease in contacting surface area)

Drawbacks of larger pellets :

Decreased reduction & heat transfer efficiency and pellet strength (as larger pellets are more difficult to indurate).

REQUIRED METALLURGICAL PROPERTIES

key pellet metallurgical properties are reducibility, sticking tendency, and metallization

sticking of pellets minimized by

additives, such as limestone or dolomite in pelletizing, or oxide coatings after the pelletizing process.

reducibility, sticking tendency determine DR furnace productivity, fuel consumption

Physical vs. Metallurgical Properties

metallurgical properties, such as reducibility, are important but the physical characteristics will dominate the behavior and performance of the pellets:

a highly reducible but weak and/or poorly sized pellet will impair permeability and gassolid contacting effectiveness and minimize the benefit of inherent excellent pellet reducibility

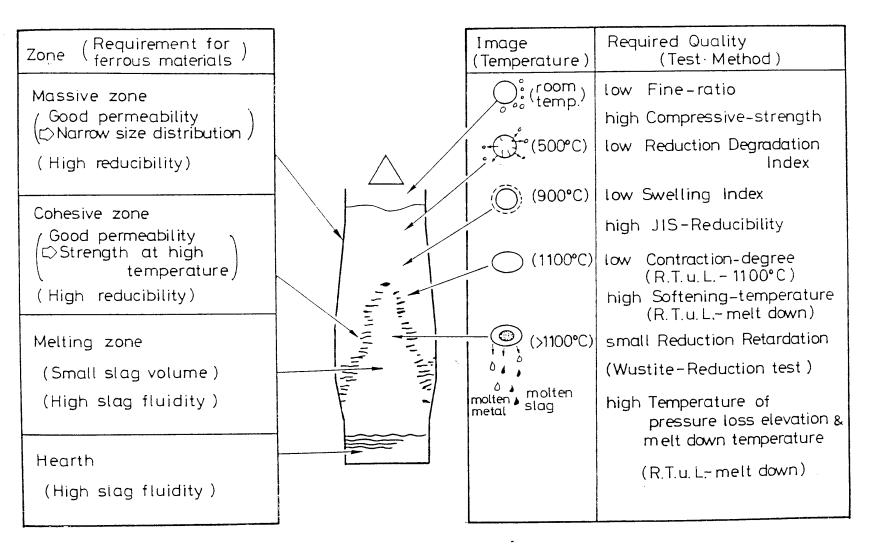
CONSISTENCY OF BF, DR PELLET PROPERTIES

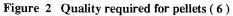
reduce pellet plant costs - set more aggressive targets for energy and additive consumption

blast furnace and DRI plant operators can set more aggressive targets for fuel rate and productivity

increased hot metal chemistry and DRI consistency leads to benefits in steelmaking, rolling operations.

FUTURE IRONMAKING PROCESSES


- Hot metal production will continue to be dominated by blast furnaces
- DRI production will continue to be dominated by shaft furnaces (Midrex, HyL)
- COREX (Pellets), FINEX (Fines) are only commercial smelting/reduction process, but \$\$\$\$\$
- Fines based processes: rotary hearth, HIsmelt, etc, still under (very slow) development


Pellet demand will continue to be strong

Appendix

texts of 2004, 2008 papers available upon request:

joe.poveromo@rawmaterialsiron.com

Limits of Slag Volume Reduction

 Furnace Size Hearth Diameter Slag Volume (m) (kg/T) • 13.7 very large > 250 10 - 12 large > 200 ۲ 8 - 10 > 150 small/medium ۲

50

Minimize Fines Charging and Generation

Maximize Permeability & Gas Utilization

increase in coke rate, fines loading, kg/T kg/T

4

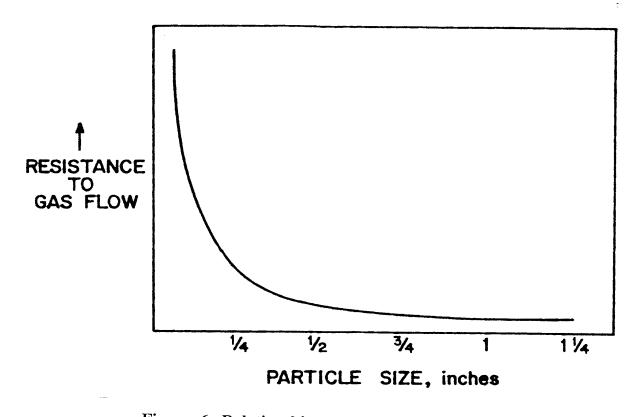


Figure 6 Relationship Between Particle Size and Gas Flow (20)

DESIRED PELLET CHEMISTRY – SiO2

- blast furnace benefits of lower SiO2 levels are lower slag volumes.
- reduction of pellet SiO2 from 4.30 to 4.00% reduces slag volume by 10 kg/T which reduces coke rate by 2 kg/T and increases hot metal production by 0.5% or about 20 tons/day for a furnace initially producing 4000 tons/day.

Minimize Larger Pellets

more difficult to preheat and pre-reduce in the stack region

increase in coke rate, loading of oversized ore, kg/T kg/T

+ 12.5 mm	1.5	50
+ 25.4 mm	4.5	50

Maintain High Tumbler Strength

increase in coke rate, decrease in tumbler Kg/T strength,< 94 %/NT of pellets charged

10 1

Effect of Transfer Points on Fines

Pellet	Cargo	Cargo
Plant	Loading	Unloading
		(Germany)

Sizing

+	16	mm	2.6	2.3	1.9

-16+9	mm	94.7	92.9

- 9+6.3 mm 2.3
- 6.3 mm 0.4

2.3 1.9 92.9 92.5 3.4 3.8 1.4 1.8

Compression Strength:

Iower threshold level for compression strength is below the range of 200 - 230 kg

further increase in compression strength will not reduce coke rate or increase production.

Compression Strength Test Issues

pressure is always referred to a plane surface: not the case with pellets

smaller pellets yield a lower strength than those of a greater diameter

Compression Strength Test Issues

Pellet diameter	Pellet area	a Compressi	on Specific
(cm)	(cm ²)	strength	Compression
		(daN)	strength, daN/cm ²
9.00	84.8	210	2.48
11.25	132.4	250	1.89
14.25	212.5	280	1.32

smaller pellets actually have a higher specific compression strength

DESIRED PELLET METALLURGICAL PROPERTIES

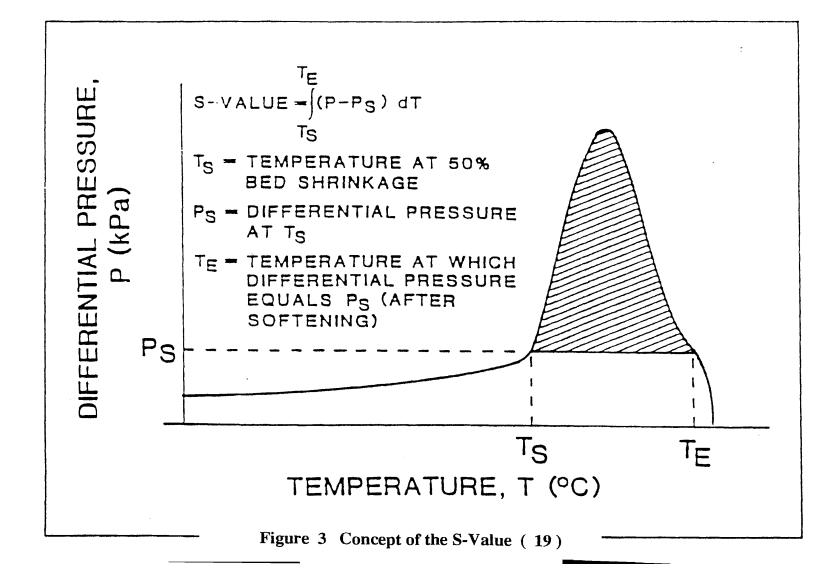
LTB (Low Temperature Breakdown)

- > 85 % + 6.3 mm permeability
- < 13 % 0.5 mm flue dust, yield

Dynamic LTB

> 80 % + 6.3 mm - permeability

Threshold levels – no benefit above these levels; thresholds can increase in high performance BF operations


DESIRED PELLET METALLURGICAL PROPERTIES Reducibility (ISO R40) gas utilization, high temperature properties acid pellets: 0.6 to 1.0 fluxed pellets: > 1.2

coke rate impact: 5 kg/T/0.1 R40

DESIRED PELLET METALLURGICAL PROPERTIES

High temperature properties difficult to relate quantitatively to furnace performance Swelling – threshold levels < 20 – acid pellets

< 15 - fluxed pellets

Cohesive Zone Configuration with Acid & Fluxed Pellets

Hot Metal

Acid Pellets

- Thick, fewer coke slits for gases to "pass-thru" (Permeability↓, Rough Operation↑)
- Outer surface closer to walls, more "dead-end" coke slits causing gas impingement, (Heat Flux 4, Lining Wear 4, Rough Operation 4)
- Longer dripping distances (Si[↓])
- Smaller lumpy zone
 (CO Utilization↓, Fuel Rate↓)
 - "Dead-end" coke slit
 "Pass-thru" coke slit

Fluxed Pellets

- Thin, more coke slits for gases to "pass-thru"
 - (Permeability 1, Rough Operation
- Outer surface away from walls, fewer "dead-end" coke slits, less gas impingement (Heat Flux↓, Lining Wear↓, Rough Operation↓)
- Shorter dripping distances (Si \downarrow)
- Larger lumpy zone
 (CO Utilization[↑], Fuel rate[↓])

Fused ore layer

Tuyere

Tap hole

Slag

Figure 4 (8)

FURNACE PRACTICE

- increased productivity
- reduced reductant rates
- increased injectant rates, mainly coal injection but also gas injection in NAFTA
- • extended campaign lives
- • ability to optimize hot metal quality

FURNACE PRACTICE

Improved pellet quality, consistency to support increased productivity, higher levels of coal and/or gas injection, extended campaign lives

Increased use of fluxed pellets, continued use of acid pellets to complement fluxed pellets, sinter and in some lower productivity operations

Effect of pellet size on tumbler strength, abrasion resistance

	_	<u> </u>	Pellet A	Pellet B	Pellet C
	2000	2007			
+ 12.5 mm	27.2	48.1	52.0	58.0	53.6
Tumbler					
+ 6.3 mm	96.0	95.2	93.4	94.0	94.0
- 0.5 mm	4.0	3.9	5.6	4.0	5.5

Thank You!